The Construction of Alternative Modified KdV Equation in (2 + 1) Dimensions
نویسنده
چکیده
A typical and effective way to construct a higher dimensional integrable equation is to extend the Lax pair for a (1 + 1) dimensional equation known as integrable to higher dimensions. Here we construct an alternative modified KdV equation in (2+1) dimensions by the higherdimensional extension of a Lax pair. And it is shown that this higher dimensional modified KdV equation passes the Painlevé test (WTC method).
منابع مشابه
The Weierstrass elliptic function expansion method and its applications in nonlinear wave equations
In this paper, based on the close relationship between the Weierstrass elliptic function ℘(ξ; g2, g3)(g2, g3, invariants) and nonlinear ordinary differential equation, a Weierstrass elliptic function expansion method is developed in terms of the Weierstrass elliptic function instead of many Jacobi elliptic functions. The mechanism is constructive and can be carried out in computer with the aid ...
متن کاملApplication of the Kudryashov method and the functional variable method for the complex KdV equation
In this present work, the Kudryashov method and the functional variable method are used to construct exact solutions of the complex KdV equation. The Kudryashov method and the functional variable method are powerful methods for obtaining exact solutions of nonlinear evolution equations.
متن کاملSupersymmetric quantum mechanics and the Korteweg-de Vries hierarchy
The connection between supersymmetric quantummechanics and the Kortewegde Vries (KdV) equation is discussed, with particular emphasis on the KdV conservation laws. It is shown that supersymmetric quantum mechanics aids in the derivation of the conservation laws, and gives some insight into the Miura transformation that converts the KdV equation into the modified KdV equation. The construction o...
متن کاملNonlinear Stability of Solitary Travelling-wave Solutions for the Kawahara-kdv and Modified Kawahara-kdv Equations
In this paper we establish the nonlinear stability of solitary travelling-wave solutions for the Kawahara-KdV equation ut + uux + uxxx − γ1uxxxxx = 0, and the modified Kawahara-KdV equation ut + 3u 2ux + uxxx − γ2uxxxxx = 0, where γi ∈ R is a positive number when i = 1, 2. The main approach used to determine the stability of solitary travelling-waves will be the theory developed by Albert in [1].
متن کاملO ct 1 99 2 N = 3 SUPERSYMMETRIC EXTENSION OF KdV EQUATION
We construct a one-parameter family of N=3 supersymmetric extensions of the KdV equation as a Hamiltonian flow on N=3 superconformal algebra and argue that it is non-integrable for any choice of the parameter. Then we propose a modified N=3 super KdV equation which possesses the higher order conserved quantities and so is a candidate for an integrable system. Upon reduction to N=2, it yields th...
متن کامل